본문 바로가기

[Physics/Math]/Math

디락 델타 함수 (Dirac delta function)

반응형
m.logPrint() is working!

<eq> and <eqq> tags are rendered to MathJax format, being enclosed by \ ( \ ) and \ [ \ ].

docuK-1 scripts started!
If this log is not closed automatically, there must be an error somewhere in your document or scripts.

Table of Contents is filled out.

Auto numberings of sections (div.sec>h2, div.subsec>h3, div.subsubsec>h4), <eqq> tags, and <figure> tags are done.

<cite> and <refer> tags are rendered to show bubble reference.

<codeprint> tags are printed to corresponding <pre> tags, only when the tags exist in the document.


Current styles (dark/bright mode, font-family, font-size, line-height) are shown.

disqus.js with id="disqus-js" is loaded.

kakao.js with id="kakao-jssdk" is loaded.

New ShortKeys (T: Table of Contents, F: Forward Section, D: Previous Section, L: To 전체목록/[Lists]) are set.

m.delayPad=0;
m.wait=1024;
wait 1517ms.
▼ Hide
Toggle a mess
Go (FS)
TofC
DocuK Log
Backward
Forward
RRA
Lists
CmtZ
CmtX
Handle CmtZ
Log in
out focus
Mode: Bright; Font: Noto Sans KR; font-size: 18.0px (10.0); line-height: 1.6;
width: 1280, height: 720, version: 2.12.18
dg:plink (Document Global Permanent Link): https://kipid.tistory.com/29
document.referrer: Empty
This document is rendered by docuK (See also SEE (Super Easy Edit) of docuK and pure SEE).

Dirac Delta Function

  1. (x-1)
    \[ \delta (x - a) = \begin{cases} \infty &\text{when } x = a \\ 0 &\text{when } x \neq a . \end{cases} \]
  2. (x-2)
    \[ \int_{R} d x ~ \delta (x - a) = \begin{cases} 1 &\text{when } a \in R \\ 0 &\text{when } a \notin R . \end{cases} \]
    In other words,
    (x-3)
    \[ \begin{split} \int_{b}^{c} d x ~ \delta (x - a) = 1 \quad\text{and}\quad \int_{c}^{b} d x ~ \delta (x - a) = -1 \end{split} \]
    when \(b < a < c\).
  3. (x-4)
    \[ \int_{R} d x ~ f(x) \delta (x - a) = \begin{cases} f(a) &\text{when } a \in R \\ 0 &\text{when } a \notin R . \end{cases} \]
  4. (x-5)
    \[ \begin{split} &\int_{b}^{c} d x ~ f(x) \frac{d}{d x} \big[ \delta (x - a) \big] \equiv \int_{b}^{c} d x ~ f(x) \delta' (x - a) \\ &= f(x) \delta (x-a) \bigg|_{b}^{c} - \int_{b}^{c} d x ~ \frac{d}{d x} \big[ f(x) \big] \delta (x - a) . \end{split} \]
    When \( b<a<c \), therefore
    (x-6)
    \[ \int_{b}^{c} d x ~ f(x) \delta' (x - a) = - f' (a) . \]
  5. (x-7)
    \[ \delta \big( f (x) \big) = \sum_i \frac{1}{ \Big| \frac{d f}{d x} (x_i) \Big|} \delta (x - x_i) \]
    where \(x_i\)'s are simple zeros of \(f(x)\).
    cf.) \( \delta(-x) = \delta(x) \) and \(\delta(a-x) = \delta(x-a)\).
  6. (x-8)
    \[ \delta^3 (\vec{x} - \vec{y}) = \delta (x_1 - y_1) ~ \delta (x_2 - y_2) ~ \delta (x_3 - y_3) \]
    in Cartesian coordinate representation.
  7. (x-9)
    \[ \int_{R} d \vec{x} ~ \delta^3 (\vec{x} - \vec{y}) = \begin{cases} 1 &\text{when } \vec{y} \in R \\ 0 &\text{when } \vec{y} \notin R . \end{cases} \]
    Since
    (x-10)
    \[ \int_{R} d x ~ d y ~ d z ~ \delta^3 (\vec{x} - \vec{x}') \quad \rightarrow \quad \int_{R} d u ~ d v ~ d w ~ \sqrt{g} ~ \delta^3 (\vec{x} - \vec{x}') , \]
    (x-11)
    \[ \delta^3 (\vec{x} - \vec{x}') = \frac{1}{\sqrt{g}} \delta (u - u') ~ \delta (v - v') ~ \delta (w - w') . \]

TRefs.References and Related Articles

▼ Show/Hide
  1. Ref. [01] Book - Classical Electro-Dynamics, 3rd Edition, Page 26, Wiley Inc. by John David Jackson.
  2. Ref. [02] 전파거북이's blog - 디랙 델타 함수 (Dirac delta function)
  3. Ref. [03] Wiki - Dirac delta function
▲ Hide
반응형
Get page views