Physicist, Programmer. What you eat, how you think, and most importantly what you have done become who you are. Who are you? and who will you be?
[Physics/Math]/Math
디락 델타 함수 (Dirac delta function)
kipid2019. 3. 4. 08:03
반응형
Dirac Delta Function
\delta (x - a) =
\begin{cases}
\infty &\text{when } x = a \\
0 &\text{when } x \neq a .
\end{cases}\int_{R} d x ~ \delta (x - a) =
\begin{cases}
1 &\text{when } a \in R \\
0 &\text{when } a \notin R .
\end{cases}
In other words,
\begin{split}
\int_{b}^{c} d x ~
\delta (x - a) = 1
\quad\text{and}\quad
\int_{c}^{b} d x ~
\delta (x - a) = -1
\end{split}
when \(b < a < c\).
\int_{R} d x ~
f(x) \delta (x - a) =
\begin{cases}
f(a) &\text{when } a \in R \\
0 &\text{when } a \notin R .
\end{cases}\begin{split}
&\int_{b}^{c} d x ~
f(x) \frac{d}{d x}
\big[ \delta (x - a) \big]
\equiv
\int_{b}^{c} d x ~
f(x) \delta' (x - a) \\
&=
f(x) \delta (x-a) \bigg|_{b}^{c}
- \int_{b}^{c} d x ~
\frac{d}{d x}
\big[ f(x) \big]
\delta (x - a) .
\end{split}
When \( b<a<c \), therefore
\int_{b}^{c} d x ~
f(x) \delta' (x - a)
= - f' (a) .\delta
\big( f (x) \big) = \sum_i
\frac{1}{
\Big|
\frac{d f}{d x} (x_i)
\Big|}
\delta (x - x_i)
where \(x_i\)'s are simple zeros of \(f(x)\).
cf.) \( \delta(-x) = \delta(x) \) and \(\delta(a-x) = \delta(x-a)\).
\delta^3 (\vec{x} - \vec{y})
= \delta (x_1 - y_1) ~
\delta (x_2 - y_2) ~
\delta (x_3 - y_3)
in Cartesian coordinate representation.
\int_{R} d \vec{x} ~
\delta^3 (\vec{x} - \vec{y})
= \begin{cases}
1 &\text{when } \vec{y} \in R \\
0 &\text{when } \vec{y} \notin R .
\end{cases}
Since
\int_{R} d x ~ d y ~ d z ~
\delta^3 (\vec{x} - \vec{x}')
\quad \rightarrow \quad
\int_{R} d u ~ d v ~ d w ~
\sqrt{g} ~
\delta^3 (\vec{x} - \vec{x}') ,\delta^3 (\vec{x} - \vec{x}')
= \frac{1}{\sqrt{g}}
\delta (u - u') ~
\delta (v - v') ~
\delta (w - w') .
References and Related Articles
Book - Classical Electro-Dynamics, 3rd Edition, Page 26, Wiley Inc. by John David Jackson.