본문 바로가기

[Physics/Math]/Physics

물리학자들의 명언(名言)들 (Physicist Quotations) # 물리학자들의 명언들 (Physicist Quotations or Sayings) 개인적으로 좋아하는거 모아보니 보어랑 아인슈타인 발언들이 많군요 . 국내에는 유명한 물리학자가 없어서 아쉽;;; 물리학이 한창 발전할 때(대략 1850~1980 정도?) 한국은 암울한 시기였으니 뭐... ## PH 2022-07-19: To SEE. 2014-06-13: docuK upgrade. 2014-??-??: First Posting. ## TOC ## Random quote about physics More Nature Quotes ## Selected quotes (Personal favorites) sayingtranswriterwriterKmyPoints The most incomprehensible th.. 더보기
Truncated many-body dynamics of interacting bosons: A variational principle with error monitoring # Truncated many-body dynamics of interacting bosons: A variational principle with error monitoring by Kang-Soo Lee and Uwe R. Fischer I apologize for not finishing this paper. I just open this in the internet. But this document is flawed as it is originally written in LaTeX and not translated to the docuK format perfectly yet. This paper is published in Int. J. Mod. Phys. B 84, 1550021 (2014) a.. 더보기
엔트로피(Entropy) 개념에 대한 이해 # 엔트로피 개념에 대한 이해 엔트로피 증가 법칙(열역학 제2법칙)을 절대적으로 생각하는 사람이 많은것 같아서 쓰게/긁어오게 됨. 이건 엔트로피 관련 글을 직접 쓰려다가 제대로 정리된 글 없나 먼저 검색하면서 알게된 글. 내가 이해하고 있는 엔트로피 개념과 거의 같아서 그냥 html+highlight로만 조금 정리. 엔트로피 개념의 시작은 실험적으로 먼저 정립되고, 후에 통계학적으로 설명이 이루어진 것인데, 이 통계학적 논리에서는 열역학 제2법칙을 완전 절대적인 것이라고 설명하지 않음. 몇가지 공리로부터 시작해서 "왜 엔트로피는 증가할 수 밖에 없는가?"를 설명하게 되는데, 공리가 합당한 것인지도 고민해봐야 하고 결론으로 내놓은 것도 제대로 이해해야 함. 결론은 항상 증가한다는게 아니라 큰 수의 법칙에 .. 더보기
전기와 자기 # 전기와 자기 전기와 자기. 물리학 역사와 함께 쉽게쉽게 설명해주신게 있어서 퍼옴. ## PH 2021-03-22: First posting ## TOC ## 강연 - 전기와 자기가 만났을 때 자석에 전류를 흘리면? by 김갑진. ## RRA Youtube - [강연] 전기와 자기가 만났을 때: 자석에 전류를 흘리면? _김갑진|2019 가을 강연 '도대체 都大體', 2019-10-28 더보기
텐서(Tensor)와 상대론(Relativity) - 1. 상대론(Relativity) # 텐서(Tensor)와 상대론(Relativity) - 1. 상대론(Relativity) 아직 완성이 덜 된 문서입니다. Introduction 정도만 읽어보세요. ## PH 2014-06-12: docuK upgrade. 2014-02-13: First Posting. ## TOC ## Introduction $E = \gamma m c^2$ 우선 상대론을 이론적으로 배우기 위해서는 tensor란 무엇인지 명확히 알고 진행해야 한다. 복잡하게 수식 들어간 것은 싫고 적당히 상대론이 어떤 이론인지만 알고 싶다고 하더라도 '텐서(Tensor)와 상대론(Relativity) - 0. 텐서(Tensor)란?'의 글부분만이라도 대충 읽고오면 도움이 될 듯 하다. 다시 중복해서 설명을 하긴 하겠지만, 어느정도는.. 더보기
방화벽 역설(Firewall paradox)로 인한 블랙홀 미스테리 A Black Hole Mystery Wrapped in a Firewall Paradox 뉴욕 타임즈에서 블랙홀에 관한 기사가 하나 실렸다. 블랙홀 미스테리(Black Hole mystery), 호킹 복사(Hawking radiation), 아인슈타인의 일반 상대론(Relativity), 양자 얽힘(Quantum entanglement), 방화벽 역설(Firewall paradox) by AMPS(Ahmed Almheiri, Donald Marolf, James Sully, and Dr. Polchinski) 등이 핵심 키워드. 현대 물리학의 핵심 이론들(theory), 원리들(principle), 신념들(tenet)들이 깨질 수 있다는 기사이다. 기사 내용 중 일부를 미리 몇개만 뽑아보자면, If t.. 더보기
양자역학 conjecture :: 측정문제. 다중 우주론과 자유의지의 상관관계? # 양자역학 conjecture :: 측정문제. 다중 우주론과 자유의지의 상관관계? 난 측정문제를 뇌랑 연관지어서 생각하기도 함. 자유의지란게 있을까? 있다면 무엇일까? 이런 고민도 하면서 생각해본 conjecture. 잠을 꼭 자야만 하는 이유랑도 연관이 있을지도? 그리고 망각에 관한 논리(?) 같은것도 있을듯 함. 설명은 천천히... 영화 나비효과 (ButterFly Effect) 란 비슷한 세계관임. 자유의지 따라 본인 뇌가 인식하는 세상이 달라지는거. 단지 영화처럼 과거로 갔을때 기억을 가지고 가는건 아님. (과거로 가지도 못하지만? 워프 같은거 이용하면 갈 수 있나? =ㅇ=;;) ## TOC ## 신? 이런 세계관으로 신을 만들자면... 남자가 여자를 원하면, 너의 세상에선 여자가 다 사라질 것.. 더보기
양자역학 (Quantum Mechanics) 양자역학 (Quantum Mechanics) 양자역학에 관해 간략하게 써볼까 생각 중. 특히나 측정 부분이나 양자얽힘(entanglement), Second Quantization 부분. 슈뢰딩거의 고양이, decoherence theory 등도... 우선은 reference만 적당히 정리해서 공개. 정리는 천천히... Table of Contents Quantum Mechanics of Single Particle 작성중. 간단한 역사 . Measurement in QM 작성중. Quantum extention to Many-body system Hidden variable theory, Bell's inequality. 작성중. Quantum Entanglement and Decoherence The.. 더보기