본문 바로가기

[IT/Programming]/Algorithm/Database

이진 탐색 트리 (Binary Search Tree, BST) 의 중위 순회 (Inorder), 전위 순회 (Preorder), 후위 순회 (Postorder) 에 대해 알아보자.

728x90
반응형
# 이진 탐색 트리 (Binary Search Tree, BST) 의 중위 순회 (Inorder), 전위 순회 (Preorder), 후위 순회 (Postorder) 에 대해 알아보자. 먼저, 이진 탐색 트리(Binary Search Tree, BST)는 다음과 같은 특성을 가지는 이진 트리입니다:
  1. 각 노드는 최대 두 개의 자식 노드를 가질 수 있습니다.
  2. 왼쪽 서브트리의 모든 노드는 해당 노드보다 작거나 같은 값을 가지며, 오른쪽 서브트리의 모든 노드는 해당 노드보다 큰 값을 가집니다.
```[.linenums.lang-py] class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right ```/ ## PH
  • 2024-03-23 : First posting.
## TOC ## 중위 순회 (Inorder) : LNR
  • 중위 순회는 왼쪽 서브트리를 먼저 탐색한 다음 현재 노드를 방문하고, 오른쪽 서브트리를 마지막으로 탐색하는 방법입니다.
  • 중위 순회는 BST에서 노드들을 오름차순으로 방문하는 순서입니다.
```[.linenums.lang-py] def inorder_traversal(root): if root: inorder_traversal(root.left) print(root.val, end=" ") inorder_traversal(root.right) ```/ ```[.linenums.lang-py] def iterativeInorder(root): stack = [] while stack or root: if root: stack.append(root) root = root.left else: root = stack.pop() print(root.val, end=" ") root = root.right ```/ ```[.linenums.lang-py] # 사용 예시 root = TreeNode(5) root.left = TreeNode(3) root.right = TreeNode(8) root.left.left = TreeNode(2) root.left.right = TreeNode(4) inorder_traversal(root) # 2 3 4 5 8 ```/ ## 전위 순회 (Preorder) : NLR
  • 전위 순회는 현재 노드를 먼저 방문한 다음 왼쪽 서브트리와 오른쪽 서브트리를 순차적으로 탐색하는 방법입니다.
```[.linenums.lang-py] def preorder_traversal(root): if root: print(root.val, end=" ") preorder_traversal(root.left) preorder_traversal(root.right) ```/ ```[.linenums.lang-py] def iterativePreorder(root): if not root: return stack = [] stack.append(root) while stack: root = stack.pop() print(root.val, end=" ") # right child is pushed first so that left is processed first if root.right: stack.append(root.right) if root.left: stack.append(root.left) ```/ ```[.linenums.lang-py] # 사용 예시 root = TreeNode(5) root.left = TreeNode(3) root.right = TreeNode(8) root.left.left = TreeNode(2) root.left.right = TreeNode(4) preorder_traversal(root) # 5 3 2 4 8 ```/ ## 후위 순회 (Postorder) : LRN
  • 후위 순회는 왼쪽 서브트리와 오른쪽 서브트리를 먼저 탐색한 다음 현재 노드를 방문하는 방법입니다.
```[.linenums.lang-py] def postorder_traversal(root): if root: postorder_traversal(root.left) postorder_traversal(root.right) print(root.val, end=" ") ```/ ```[.linenums.lang-py] def iterativePostorder(root): stack = [] lastNodeVisited = None while stack or root: if root: stack.append(root) root = root.left else: peekNode = stack[-1] # if right child exists and traversing root from left child, then move right if peekNode.right and lastNodeVisited != peekNode.right: root = peekNode.right else: print(peekNode.val, end=" ") lastNodeVisited = stack.pop() ```/ ```[.linenums.lang-py] # 사용 예시 root = TreeNode(5) root.left = TreeNode(3) root.right = TreeNode(8) root.left.left = TreeNode(2) root.left.right = TreeNode(4) postorder_traversal(root) # 2 4 3 8 5 ```/ ## 이진 탐색 트리 (BST) 와 관련된 문제들 (Coding test | quiz about BST) ### 94. Binary Tree Inorder Traversal 출처: leetcode.com :: 94. Binary Tree Inorder Traversal Given the root of a binary tree, return the inorder traversal of its nodes' values. ```[.linenums.lang-py] class Solution: def inorderTraversal(self, root: Optional[TreeNode]) -> list[int]: res = [] stack = [] curr = root while curr or stack: while curr: # To the leftmost node. stack.append(curr) # Stack and Pop curr = curr.left curr = stack.pop() # Stack and Pop res.append(curr.val) # Append current node val. curr = curr.right # To the right node. return res ```/ ```[.linenums.lang-py] class Solution: def inorderTraversal(self, root: Optional[TreeNode]) -> list[int]: res = [] def inorder(root): if not root: return inorder(root.left) res.append(root.val) inorder(root.right) inorder(root) return res ```/ ```[.linenums.lang-ts] /** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function inorderTraversal(root: TreeNode | null): number[] { let res = [] let inorder = function (root: TreeNode | null) { if (!root) { return } inorder(root.left); res.push(root.val); inorder(root.right); }; inorder(root) return res }; ```/ ### 95. Unique Binary Search Trees II 출처: leetcode.com :: 95. Unique Binary Search Trees II Given an integer n, return all the structurally unique BST's (binary search trees), which has exactly n nodes of unique values from 1 to n. Return the answer in any order. ```[.linenums.lang-py] memos = defaultdict(list) def helper(left, right): # construct trees using left->right numbers if left > right: return [None] if (left, right) in memos: return memos[(left, right)] for i in range(left, right+1): # i can choose right, so the range is to right+1 lefts = helper(left, i-1) rights = helper(i+1, right) for l in lefts: # go through all the lefts and rights for r in rights: root = TreeNode(i, l, r) # root created memos[(left, right)].append(root) return memos[(left, right)] # just return the stored values helper(1, 8) class Solution: def generateTrees(self, n: int) -> list[Optional[TreeNode]]: return helper(1, n) ```/ ```[.linenums.lang-py] from typing import Optional from functools import lru_cache # Definition for a binary tree node. class TreeNode: def __init__(self, val: int=0, left=None, right=None): self.val = val self.left = left self.right = right def __repr__(self): return f"TreeNode{{val: {self.val}, left: {self.left}, right: {self.right}}}" class Solution: def generateTrees(self, n: int) -> list[Optional[TreeNode]]: @lru_cache def buildtree(left, right): if right < left: return [None] trees = [] for nd in range(left, right + 1): ltrees = buildtree(left, nd - 1) rtrees = buildtree(nd + 1, right) for ltree in ltrees: for rtree in rtrees: root = TreeNode(nd, ltree, rtree) trees.append(root) return trees return buildtree(1, n) sol = Solution() lis = sol.generateTrees(8) for li in lis: print(f"{li = }") ```/ ### 96. Unique Binary Search Trees 출처: leetcode.com :: 96. Unique Binary Search Trees Given an integer n, return the number of structurally unique BST's (binary search trees) which has exactly n nodes of unique values from 1 to n. ```[.linenums.lang-py] memo = {0:1, 1:1} class Solution: def numTrees(self, n: int) -> int: if n<=1: return 1 res = 0 if n in memo: return memo[n] for i in range(n): res += self.numTrees(i) * self.numTrees(n-1-i) memo[n] = res return res ```/ ```[.linenums.lang-py] class Solution: @lru_cache def numTrees(self, n: int) -> int: if n<=1: return 1 res = 0 for i in range(n): res += self.numTrees(i) * self.numTrees(n-1-i) return res ```/ ### 98. Validate Binary Search Tree 출처: leetcode.com :: 98. Validate Binary Search Tree Given the root of a binary tree, determine if it is a valid binary search tree (BST). A valid BST is defined as follows:
  • The left of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.
subtree: A subtree of treeName is a tree consisting of a node in treeName and all of its descendants.
```[.linenums.lang-py] class Solution: def isValidBST(self, root: Optional[TreeNode]) -> bool: def isValidHelper(root: Optional[TreeNode], min_: int, max_: int) -> bool: if not root: return True return min_<root.val<max_ and isValidHelper(root.left, min_, root.val) and isValidHelper(root.right, root.val, max_) return isValidHelper(root, -math.inf, math.inf) ```/ ### 99. Recover Binary Search Tree 출처: leetcode.com :: 99. Recover Binary Search Tree You are given the root of a binary search tree (BST), where the values of exactly two nodes of the tree were swapped by mistake. Recover the tree without changing its structure. ```[.linenums.lang-py] class Solution: def recoverTree(self, root: Optional[TreeNode]) -> None: """ Do not return anything, modify root in-place instead. """ def inorderBST(root): if root: inorderBST(root.left) if self.prev.val > root.val: if not self.first: self.first = self.prev self.second = root self.prev = root inorderBST(root.right) self.prev = TreeNode(-math.inf) self.first = self.second = None inorderBST(root) self.first.val, self.second.val = self.second.val, self.first.val ```/ ### 100. Same Tree 출처: leetcode.com :: 100. Same Tree Given the roots of two binary trees p and q, write a function to check if they are the same or not. Two binary trees are considered the same if they are structurally identical, and the nodes have the same value. ```[.linenums.lang-py] class Solution: def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode]) -> bool: if p == None and q == None: return True if p and q: return p.val==q.val and self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right) return False ```/ ### 101. Symmetric Tree 출처: leetcode.com :: 101. Symmetric Tree Given the root of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center). ```[.linenums.lang-py] class Solution: def isSymmetric(self, root: Optional[TreeNode]) -> bool: def isSym(left: Optional[TreeNode], right: Optional[TreeNode]) -> bool: if not left and not right: return True if left and right: return left.val==right.val and isSym(left.left, right.right) and isSym(left.right, right.left) return False return isSym(root.left, root.right) ```/ ### 102. Binary Tree Level Order Traversal 출처: leetcode.com :: 102. Binary Tree Level Order Traversal Given the root of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level). ```[.linenums.lang-py] class Solution: def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]: if not root: return [] res = [[root.val]] nodesRes = [[root]] def addLevel(levelRoots: List[TreeNode]) -> Optional[List[TreeNode]]: nodeValues = [] nodes = [] for levelRoot in levelRoots: if levelRoot.left: nodes.append(levelRoot.left) nodeValues.append(levelRoot.left.val) if levelRoot.right: nodes.append(levelRoot.right) nodeValues.append(levelRoot.right.val) if len(nodeValues) > 0: res.append(nodeValues) nodesRes.append(nodes) return True return False while addLevel(nodesRes[-1]): pass return res ```/ ### 105. Construct Binary Tree from Preorder and Inorder Traversal 출처: leetcode.com :: 105. Construct Binary Tree from Preorder and Inorder Traversal Given two integer arrays preorder and inorder where preorder is the preorder traversal of a binary tree and inorder is the inorder traversal of the same tree, construct and return the binary tree. ```[.linenums.lang-py] class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: # Create a hashmap to store the indices of elements in the inorder list inorder_map = {val: index for index, val in enumerate(inorder)} # Define a recursive function to build the binary tree def build(pre_start: int, pre_end: int, in_start: int, in_end: int) -> Optional[TreeNode]: # Base case: If the start index in the preorder list is greater than the end index, # it indicates that the current subtree is null, so return None if pre_start > pre_end: return None # Extract the value of the root node from the preorder list using the start index root_val = preorder[pre_start] root = TreeNode(root_val) # Find the index of the root node's value in the inorder list using the hashmap in_index = inorder_map[root_val] # Determine the size of the left subtree left_size = in_index - in_start # Recursively build the left subtree root.left = build(pre_start + 1, pre_start + left_size, in_start, in_index - 1) # Recursively build the right subtree root.right = build(pre_start + left_size + 1, pre_end, in_index + 1, in_end) return root # Call the build function with initial parameters corresponding to the entire preorder and inorder lists return build(0, len(preorder) - 1, 0, len(inorder) - 1) ```/ ```[.linenums.lang-py] class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: inorder_map = { v:i for i,v in enumerate(inorder) } # v -> inorder index curr_node_preorder_index = 0 def buildTree(left: int, right: int) -> Optional[TreeNode]: if left > right: return None nonlocal curr_node_preorder_index curr_node_value = preorder[curr_node_preorder_index] curr_node_inorder_index = inorder_map[curr_node_value] curr_node = TreeNode(curr_node_value) curr_node_preorder_index += 1 curr_node.left = buildTree(left, curr_node_inorder_index-1) # left first (preorder) curr_node.right = buildTree(curr_node_inorder_index+1, right) return curr_node return buildTree(0, len(inorder)-1) ```/ ### 106. Construct Binary Tree from Inorder and Postorder Traversal 출처: leetcode.com :: 106. Construct Binary Tree from Inorder and Postorder Traversal Given two integer arrays inorder and postorder where inorder is the inorder traversal of a binary tree and postorder is the postorder traversal of the same tree, construct and return the binary tree. ```[.linenums.lang-py] class Solution: def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]: inorder_index = { val:i for i,val in enumerate(inorder)} def helper(l,r): if l>r: return None root = TreeNode(postorder.pop()) index = inorder_index[root.val] root.right = helper(index+1,r) # right first (postorder) root.left = helper(l,index-1) return root return helper(0, len(inorder)-1) ```/ ### 107. Binary Tree Level Order Traversal II 출처: leetcode.com :: 107. Binary Tree Level Order Traversal II Given the root of a binary tree, return the bottom-up level order traversal of its nodes' values. (i.e., from left to right, level by level from leaf to root). ```[.linenums.lang-py] class Solution: def levelOrderBottom(self, root: Optional[TreeNode]) -> List[List[int]]: if not root: return [] values = [[root.val]] nodes = [[root]] def addLevel(levelNodes: List[TreeNode]) -> bool: nextValues = [] nextNodes = [] for levelNode in levelNodes: if levelNode.left: nextValues.append(levelNode.left.val) nextNodes.append(levelNode.left) if levelNode.right: nextValues.append(levelNode.right.val) nextNodes.append(levelNode.right) if len(nextNodes) > 0: values.append(nextValues) nodes.append(nextNodes) return True else: return False while addLevel(nodes[-1]): pass return values[::-1] ```/ ### 108. Convert Sorted Array to Binary Search Tree 출처: leetcode.com :: 108. Convert Sorted Array to Binary Search Tree Given an integer array nums where the elements are sorted in ascending order, convert it to a height-balanced binary search tree. ```[.linenums.lang-py] class Solution: def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]: def helper(left: int, right: int) -> Optional[TreeNode]: if left > right: return None elif left == right: return TreeNode(nums[left]) # elif left+1 == right: # return TreeNode(nums[right], TreeNode(nums[left])) mid = (left + right) // 2 # 1 ~ 7: 8//2 = 4 root = TreeNode(nums[mid], helper(left, mid-1), helper(mid+1, right)) return root return helper(0, len(nums)-1) ```/ ### 109. Convert Sorted List to Binary Search Tree 출처: leetcode.com :: 109. Convert Sorted List to Binary Search Tree Given the head of a singly linked list where elements are sorted in ascending order, convert it to a height-balanced binary search tree. ```[.linenums.lang-py] class Solution: def sortedListToBST(self, head: Optional[ListNode]) -> Optional[TreeNode]: if not head: return None nums = [head.val] while head.next != None: head = head.next nums.append(head.val) def helper(left: int, right: int) -> Optional[TreeNode]: if left > right: return None elif left == right: return TreeNode(nums[left]) mid = (left + right) // 2 return TreeNode(nums[mid], helper(left, mid-1), helper(mid+1, right)) return helper(0, len(nums)-1) ```/ ```[.linenums.lang-py] class Solution: def sortedListToBST(self, head: Optional[ListNode]) -> Optional[TreeNode]: def getMid(head): prev, slow, fast = None, head, head while fast and fast.next: prev, slow, fast = slow, slow.next, fast.next.next if prev: prev.next = None return slow if head == None: return None elif head.next == None: return TreeNode(head.val) mid = getMid(head) root = TreeNode(mid.val, self.sortedListToBST(head), self.sortedListToBST(mid.next)) return root ```/ ### 110. Balanced Binary Tree 출처: leetcode.com :: 110. Balanced Binary Tree Given a binary tree, determine if it is .
height-balanced: A height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one.
```[.linenums.lang-py] class Solution: def isBalanced(self, root: Optional[TreeNode]) -> bool: def inorder(root: TreeNode, level: int, maxLevel: int) -> (int, bool): if not root: return maxLevel, True leftMax, leftBal = inorder(root.left, level+1, level) rightMax, rightBal = inorder(root.right, level+1, level) return max(leftMax, rightMax), leftBal and rightBal and abs(leftMax - rightMax) <= 1 return inorder(root, 1, 1)[1] ```/ ### 113. Path Sum II 출처: leetcode.com :: 113. Path Sum II Given the root of a binary tree and an integer targetSum, return all root-to-leaf paths where the sum of the node values in the path equals targetSum. Each path should be returned as a list of the node values, not node references. A root-to-leaf path is a path starting from the root and ending at any leaf node. A leaf is a node with no children. ```[.linenums.lang-py] class Solution: def pathSum(self, root: Optional[TreeNode], targetSum: int) -> List[List[int]]: if not root: return [] res = [] path = [] def search(cur, sumUntil): path.append(cur.val) if not cur.left and not cur.right and sumUntil == targetSum: res.append(path[:]) # shallow copy of path if cur.left: search(cur.left, sumUntil+cur.left.val) if cur.right: search(cur.right, sumUntil+cur.right.val) path.pop() search(root, root.val) return res ```/ ### 114. Flatten Binary Tree to Linked List 출처: leetcode.com :: 114. Flatten Binary Tree to Linked List Given the root of a binary tree, flatten the tree into a "linked list":
  • The "linked list" should use the same TreeNode class where the right child pointer points to the next node in the list and the left child pointer is always null.
  • The "linked list" should be in the same order as a pre-order traversal of the binary tree.
```[.linenums.lang-py] class Solution: def flatten(self, root: Optional[TreeNode]) -> None: """ Do not return anything, modify root in-place instead. """ if not root: return None preRoot = TreeNode() def preorder(curRoot: TreeNode): nonlocal preRoot newRoot = TreeNode(curRoot.val) preRoot.right = newRoot preRoot = newRoot if curRoot.left: preorder(curRoot.left) if curRoot.right: preorder(curRoot.right) savePreRoot = preRoot preorder(root) root.left = None root.right = savePreRoot.right.right ```/ ```[.linenums.lang-py] class Solution: def flatten(self, root: Optional[TreeNode]) -> None: """ Do not return anything, modify root in-place instead. """ def helper(node): if not node: return None left_tail = helper(node.left) right_tail = helper(node.right) if left_tail: left_tail.right = node.right node.right = node.left node.left = None return right_tail if right_tail else left_tail if left_tail else node helper(root) ```/ ``` class Solution: def flatten(self, root: Optional[TreeNode]) -> None: """ Do not return anything, modify root in-place instead. """ def pre_order(root: TreeNode): if not root: return [] return [root] + pre_order(root.left) + pre_order(root.right) nodes = pre_order(root) for i in range(len(nodes) - 1): nodes[i].left = None nodes[i].right = nodes[i+1] ```/ ## RRA
  1. Wiki - Tree traversal
728x90
반응형