본문 바로가기

[Physics/Math]/Math

Runge-Kutta method, Matrix exponential

반응형
m.logPrint() is working!

<eq> and <eqq> tags are rendered to MathJax format, being enclosed by \ ( \ ) and \ [ \ ].

docuK-1 scripts started!
If this log is not closed automatically, there must be an error somewhere in your document or scripts.

Table of Contents is filled out.

Auto numberings of sections (div.sec>h2, div.subsec>h3, div.subsubsec>h4), <eqq> tags, and <figure> tags are done.

<cite> and <refer> tags are rendered to show bubble reference.

<codeprint> tags are printed to corresponding <pre> tags, only when the tags exist in the document.


Current styles (dark/bright mode, font-family, font-size, line-height) are shown.

disqus.js with id="disqus-js" is loaded.

kakao.js with id="kakao-jssdk" is loaded.

New ShortKeys (T: Table of Contents, F: Forward Section, D: Previous Section, L: To 전체목록/[Lists]) are set.

m.delayPad=512;
m.wait=1024;
wait 1271ms.
▼ Hide
Toggle a mess
Go (FS)
TofC
DocuK Log
Backward
Forward
RRA
Lists
CmtZ
CmtX
Handle CmtZ
Log in
out focus
Mode: Bright; Font: Noto Sans KR; font-size: 18.0px (10.0); line-height: 1.6;
width: 1280, height: 720, version: 2.12.18
Canonical URI: https://kipid.tistory.com/entry/Runge-Kutta-method-Matrix-exponential
dg:plink (Document Global Permanent Link): https://kipid.tistory.com/259
document.referrer: Empty
This document is rendered by docuK (See also SEE (Super Easy Edit) of docuK and pure SEE).

Runge-Kutta method, Matrix exponential

수식이 기니까 윗쪽 font-size 조정하는 Small A, Big A 에서 Small A 누르셔서 font-size 9.0px (5.0) 정도로 맞춰서 보시길 권장드립니다.
Since the equation is too long, I recommend that the font-size of docuK is to be set to be 9.0px (5.0) by clicking Small A among Small A, Big A on the top side of this document.

TPH.Posting History

▼ Show/Hide

Table of Contents

PH.Posting History

1.Differential equation with matrices (RLC circuit)

2.\( \exp(A_{ij}) \)

3.Evolution of variables

4.Numerical implementation

4.1.Euler's method (Up to 1st-order)

5.Let's try to satisfy/content higher orders.

5.1.Taylor expansion of $\Psi$

6.Let's match the coefficients up to $\textrm{O}(h^4)$.

6.1.Case $k=0$

6.2.Case $k=1$

6.3.Case $k=2$

6.4.Case $k=3$

7.Evolution of variables when it explicitely depends on itself.

8.Numerical implementation to satisfy/content higher orders.

8.1.Taylor expansion of $\Psi$

9.Let's match the coefficients up to $\textrm{O}(h^k)$.

9.1.Order of $h$. $k=0$.

9.2.Order of $h^2$. $k=1$.

9.3.Order of $h^3$. $k=2$.

9.4.Order of $h^4$. $k=3$.

9.5.Order of $h^5$. $k=4$.

10.Written in papers by color ballpoint pen

11.Written in papers 2.

12.Candidate set $\{ b_p \}$, $\{ c_p \}$, $\{ a_{pm} \}$

12.1.Let's consider $b_0 = \frac{1}{6}$, $b_1 = \frac{1}{3}$, $b_2 = \frac{1}{3}$, $b_3 = \frac{1}{6}$ and $c_0 = 0$, $c_1 = \frac{1}{2}$, $c_2 = \frac{1}{2}$, $c_3 = 1$.

12.2.Let's consider $b_0 = \frac{1}{8}$, $b_1 = \frac{3}{8}$, $b_2 = \frac{3}{8}$, $b_3 = \frac{1}{8}$ and $c_0 = 0$, $c_1 = \frac{1}{3}$, $c_2 = \frac{2}{3}$, $c_3 = 1$.

12.3.Let's consider $b_0 = \frac{16}{135}$, $b_1 = 0$, $b_2 = \frac{6656}{12825}$, $b_3 = \frac{28561}{56430}$, $b_4 = -\frac{9}{50}$, $b_5 = \frac{2}{55}$ and $c_0 = 0$, $c_1 = \frac{1}{4}$, $c_2 = \frac{3}{8}$, $c_3 = \frac{12}{13}$, $c_4 = 1$, $c_5 = \frac{1}{2}$.

12.4.Let's consider $b_0 = \frac{25}{216}$, $b_1 = 0$, $b_2 = \frac{1408}{2565}$, $b_3 = \frac{2197}{4104}$, $b_4 = -\frac{1}{5}$, $b_5 = 0$ and $c_0 = 0$, $c_1 = \frac{1}{4}$, $c_2 = \frac{3}{8}$, $c_3 = \frac{12}{13}$, $c_4 = 1$, $c_5 = \frac{1}{2}$.

13.Adaptive step size

Refs.References and Related Articles

T1.Differential equation with matrices (RLC circuit)

▼ Show/Hide
(1-1)
\[ \begin{align*} \frac{d x_k}{d t} &= A_{ki} x_i + B_{ki} y_i \\ y_k &= C_{ki} x_i + D_{ki} y_i \end{align*} \]
where dummy (repeated) indices means summation over all (e.g. \( A_{ki} x_i \equiv \sum_{i} A_{ki} x_i \)).
▲ Hide

T2.\( \exp(A_{ij}) \)

▼ Show/Hide
Taylor series definition of matrix exponential .
(2-1)
\[ \exp(A_{ij}) = \sum_{k=0}^{\infty} \frac{1}{k!} A^k \]
If \( A_{ij} \) can be diagonalized as
(2-2)
\[ A_{ij} = U_{ik} \delta_{kl} D_{kl} U^{-1}_{lj} \]
, then
(2-3)
\[ \exp(A_{ij}) = \exp(U_{ik} \delta_{kl} D_{kl} U^{-1}_{lj}) = U_{ik} \exp(\delta_{kl} D_{kl}) U^{-1}_{lj} \]
where
(2-4)
\[ \exp(\delta_{kl} D_{kl}) = \delta_{kl} \exp(D_{kl}) . \]
Explicitely speaking,
(2-5)
\[ A = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{bmatrix} , \]
then its exponential can be obtained by exponentiating each entry on the main diagonal:
(2-6)
\[ e^A = \begin{bmatrix} e^{a_1} & 0 & \cdots & 0 \\ 0 & e^{a_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{a_n} \end{bmatrix} . \]
▲ Hide

T3.Evolution of variables

▼ Show/Hide
Let an evolution of $\Psi$ from the initial value be specified as follows:
(3-1)
\[ \Psi \big( \{ x^{\mu} \} \big) = \Psi \big( \{ x^{\mu} (\lambda) \} \big) . \]
The evolution equation is
(3-2)
\[ \frac{d \Psi \big( \{ x^{\mu} (\lambda) \} \big)}{d \lambda} = f \Big( \{ x^{\mu} (\lambda) \} ; \lambda \Big) . \]
Then we want to find the final value $\Psi_f$ from the initial value $\Psi_i$ where
(3-3)
\[ \Psi_f \equiv \Psi \big( \{ x^{\mu} (\lambda_f) \} \big) ~~~ \text{and} ~~~ \Psi_i \equiv \Psi \big( \{ x^{\mu} (\lambda_i) \} \big) . \]
And let's think the case that the path $x^{\mu} (\lambda)$ is set to be fixed.
Then
(3-4)
\[ \begin{align*} \Psi_f - \Psi_i & = \int_{\lambda_i}^{\lambda_f} f \Big( \{ x^{\mu} (\lambda) \} ; \lambda \Big) ~ d \lambda \\ &= \int_{\lambda_i}^{\lambda_f} f \Big( \{ x^{\mu} \} ; \lambda \Big) ~ d \lambda \end{align*} \]
where $f()$ is explicitely expressed by $\{ x^{\mu} \}$, $\lambda$.
▲ Hide

T4.Numerical implementation

▼ Show/Hide

T4.1.Euler's method (Up to 1st-order)

(4-1)
\[ \Psi \Big( \big\{ x^{\mu} \bigg( \lambda_i + \frac{\lambda_f - \lambda_i}{N} (n+1) \bigg) \big\} \Big) - \Psi \Big( \big\{ x^{\mu} \bigg( \lambda_i + \frac{\lambda_f - \lambda_i}{N} n \bigg) \big\} \Big) \]
becomes, with defining $h \equiv \frac{\lambda_f - \lambda_i}{N}$,
(4-2)
\[ \begin{align*} \Psi \Big( \big\{ x^{\mu} \bigg( \lambda_i + h (n+1) \bigg) \big\} \Big) - \Psi \Big( \big\{ x^{\mu} \bigg( \lambda_i + h n \bigg) \big\} \Big) &= \sum_{j=0}^{n-1} f \Big( \{ x^{\mu} (\lambda_i + h j) \} ; \lambda_i + h j \Big) \cdot h \\ &= \sum_{j=0}^{n-1} f \Big( \lambda_i + h j \Big) \cdot h . \end{align*} \]
▲ Hide

T5.Let's try to satisfy/content higher orders.

▼ Show/Hide
We can candidate that the below equation is correct upto the fourth order $\mathrm{O}(h^4)$.
Difining $\lambda_n \equiv \lambda_i + h n$,
(5-1)
\[ \Psi \big( \{ x^{\mu} (\lambda_{n+1}) \} \big) := \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + h \cdot \sum_k b_k f_k , \]
where
(5-2)
\[ \begin{align*} f_0 &= f \Big( \{ x^{\mu} (\lambda_n) \} ; \lambda_n \Big) \\ f_1 &= f \Big( \{ x^{\mu} (\lambda_n + c_1 \cdot h) \} ; \lambda_n + c_1 \cdot h \Big) \\ f_2 &= f \Big( \{ x^{\mu} (\lambda_n + c_2 \cdot h) \} ; \lambda_n + c_2 \cdot h \Big) \\ f_3 &= f \Big( \{ x^{\mu} (\lambda_n + c_3 \cdot h) \} ; \lambda_n + c_3 \cdot h \Big) . \end{align*} \]
Generally $f$ can be written by
(5-3)
\[ f = f \Big( \{ x^{\mu} (\lambda_n + c \cdot h) \} ; \lambda_n + c \cdot h \Big) . \]
With index $p$,
(5-4)
\[ f_p = f \Big( \{ x^{\mu} (\lambda_n + c_p \cdot h) \} ; \lambda_n + c_p \cdot h \Big) . \]

T5.1.Taylor expansion of $\Psi$

(5-5)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + \frac{d \Psi (\lambda_{n})}{d \lambda} \cdot h + \frac{1}{2!} \frac{d^2 \Psi (\lambda_{n})}{d \lambda^2} \cdot h^2 + \frac{1}{3!} \frac{d^3 \Psi (\lambda_{n})}{d \lambda^3} \cdot h^3 + \cdots \\ &= \sum_{k=0}^{\infty} \frac{1}{k!} \frac{d^k \Psi (\lambda)}{d \lambda^k} \bigg|_{\lambda = \lambda_n} \cdot h^k ~~ . \end{align*} \]
Since $f_0 = \frac{d \Psi}{d \lambda}$,
(5-6)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + f_0 (\lambda_n) \cdot h + \frac{1}{2!} \frac{d f_0 (\lambda_n)}{d \lambda} \cdot h^2 + \frac{1}{3!} \frac{d^2 f_0 (\lambda_n)}{d \lambda^2} \cdot h^3 + \cdots \\ &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + \sum_{k=0}^{\infty} \frac{1}{(k+1)!} \frac{d^k f_0 (\lambda_n)}{d \lambda^k} \cdot h^{k+1} ~~ . \end{align*} \]
The taylor expansion of the Runge-Kutta method becomes
(5-7)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + h \cdot \sum_p b_p f_p (\lambda_n , h) \\ &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + h \cdot \sum_p \sum_{k=0}^{\infty} \frac{b_p}{k!} \frac{d^{k} f_p (\lambda ; h)}{d h^{k}} \bigg|_{\lambda=\lambda_n, ~ h=0} \cdot h^{k} , \end{align*} \]
where
(5-8)
\[ \begin{align*} \frac{d f_p \big( \lambda ; h \big)}{d h} \bigg|_{\lambda=\lambda_n , ~ h=0} &= \bigg[ \frac{d x^{\mu}}{d h} \frac{\partial}{\partial x^{\mu}} + \frac{d \lambda}{d h} \frac{\partial}{\partial \lambda} \bigg] f_p \bigg|_{\lambda=\lambda_n , ~ h=0} \\ &= c_p \cdot \bigg[ \frac{d x^{\mu}}{d \lambda} \frac{\partial}{\partial x^{\mu}} + \frac{\partial}{\partial \lambda} \bigg] f_p \bigg|_{\lambda=\lambda_n, ~ h=0} \\ &= c_p \cdot \frac{d f_p}{d \lambda} \bigg|_{\lambda=\lambda_n, ~ h=0} \end{align*} \]
and
(5-9)
\[ \begin{align*} \frac{d^k f_p \big( \lambda ; h \big)}{d h^k} \bigg|_{\lambda=\lambda_n, ~ h=0} &= \bigg[ c_p \cdot \frac{d}{d \lambda} \bigg]^k f_p \big( \lambda ; h \big) \Bigg|_{\lambda=\lambda_n, ~ h=0} \\ &= c_p^k \cdot \frac{d^k f_p}{d \lambda^k} \big( \lambda ; h \big) \Bigg|_{\lambda=\lambda_n, ~ h=0} . \end{align*} \]
Since \( \frac{d^k f_p}{d \lambda^k} \bigg|_{\lambda=\lambda_n, ~ h=0} = \frac{d^k f_0}{d \lambda^k} \bigg|_{\lambda=\lambda_n, ~ h=0} \), therefore Eq.
(5-7)
(5-7)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + h \cdot \sum_p b_p f_p (\lambda_n , h) \\ &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + h \cdot \sum_p \sum_{k=0}^{\infty} \frac{b_p}{k!} \frac{d^{k} f_p (\lambda ; h)}{d h^{k}} \bigg|_{\lambda=\lambda_n, ~ h=0} \cdot h^{k} , \end{align*} \]
becomes
(5-10)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + \sum_p \sum_{k=0}^{\infty} \frac{b_p}{k!} \frac{d^{k} f_0 (\lambda ; h)}{d \lambda^{k}} \bigg|_{\lambda=\lambda_n, ~ h=0} \cdot c_p^k ~ h^{k+1} , \end{align*} \]
▲ Hide

T6.Let's match the coefficients up to $\textrm{O}(h^4)$.

▼ Show/Hide
Matching the coefficients of Eq.
(5-6)
(5-6)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + f_0 (\lambda_n) \cdot h + \frac{1}{2!} \frac{d f_0 (\lambda_n)}{d \lambda} \cdot h^2 + \frac{1}{3!} \frac{d^2 f_0 (\lambda_n)}{d \lambda^2} \cdot h^3 + \cdots \\ &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + \sum_{k=0}^{\infty} \frac{1}{(k+1)!} \frac{d^k f_0 (\lambda_n)}{d \lambda^k} \cdot h^{k+1} ~~ . \end{align*} \]
and Eq.
(5-10)
(5-10)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + \sum_p \sum_{k=0}^{\infty} \frac{b_p}{k!} \frac{d^{k} f_0 (\lambda ; h)}{d \lambda^{k}} \bigg|_{\lambda=\lambda_n, ~ h=0} \cdot c_p^k ~ h^{k+1} , \end{align*} \]
,
(6-1)
\[ \frac{1}{(k+1)!} = \sum_p \frac{1}{k!} b_p c_p^k \]
Therefore
(6-2)
\[ \sum_p b_p c_p^k = \frac{1}{k+1} ~~~~~ \text{for} ~~ k=0, 1, 2, \cdots \]

T6.1.Case $k=0$

(6-3)
\[ \sum_p b_p = 1 . \]

T6.2.Case $k=1$

(6-4)
\[ \sum_p b_p c_p = \frac{1}{2} . \]

T6.3.Case $k=2$

(6-5)
\[ \sum_p b_p c_p^2 = \frac{1}{3} . \]

T6.4.Case $k=3$

(6-6)
\[ \sum_p b_p c_p^3 = \frac{1}{4} . \]
▲ Hide

T7.Evolution of variables when it explicitely depends on itself.

▼ Show/Hide
Let's say that the evolution equation is given by
(7-1)
\[ \frac{d \Psi \big( \{ x^{\mu} (\lambda) \} \big)}{d \lambda} = f \Big( \{ x^{\mu} (\lambda) \} ; \lambda ; \Psi (\lambda) \Big) . \]
Then we want to find the final value $\Psi_f$ from the initial value $\Psi_i$ where
(7-2)
\[ \Psi_f \equiv \Psi \big( \{ x^{\mu} (\lambda_f) \} \big) ~~~ \text{and} ~~~ \Psi_i \equiv \Psi \big( \{ x^{\mu} (\lambda_i) \} \big) . \]
And let's think the case that the path $x^{\mu} (\lambda)$ is set to be fixed.
Then
(7-3)
\[ \begin{align*} \Psi_f - \Psi_i & = \int_{\lambda_i}^{\lambda_f} f \Big( \{ x^{\mu} (\lambda) \} ; \lambda, \Psi (\lambda) \Big) ~ d \lambda \\ &= \int_{\lambda_i}^{\lambda_f} f \Big( \{ x^{\mu} \} ; \lambda, \Psi \Big) ~ d \lambda \end{align*} \]
where $f()$ is explicitely expressed by $\{ x^{\mu} \}$, $\lambda$, and $\Psi(\lambda)$.
▲ Hide

T8.Numerical implementation to satisfy/content higher orders.

▼ Show/Hide
We can candidate that the below equation is correct upto the $m$-th order $\mathrm{O}(h^{m})$.
Difining $\lambda_n \equiv \lambda_i + h n$,
(8-1)
\[ \Psi \big( \{ x^{\mu} (\lambda_{n+1}) \} \big) := \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + h \cdot \sum_k b_k f_k , \]
where
(8-2)
\[ \begin{align*} f_0 &= f \Big( \{ x^{\mu} (\lambda_n) \} ; \lambda_n ; \Psi (\lambda_n) \Big) \\ f_1 &= f \Big( \{ x^{\mu} (\lambda_n + c_1 \cdot h) \} ; \lambda_n + c_1 \cdot h ; \Psi (\lambda_n) + h \cdot a_{10} f_0 \Big) \\ f_2 &= f \Big( \{ x^{\mu} (\lambda_n + c_2 \cdot h) \} ; \lambda_n + c_2 \cdot h ; \Psi (\lambda_n) + h \cdot \big( a_{20} f_0 + a_{21} f_1 \big) \Big) \\ f_3 &= f \Big( \{ x^{\mu} (\lambda_n + c_3 \cdot h) \} ; \lambda_n + c_3 \cdot h ; \Psi (\lambda_n) + h \cdot \big( a_{30} f_0 + a_{31} f_1 + a_{32} f_2 \big) \Big) . \end{align*} \]
Generally $f$ can be written by
(8-3)
\[ f = f \Big( \{ x^{\mu} (\lambda_n + c \cdot h) \} ; \lambda_n + c \cdot h ; \Psi (\lambda_n) + h \cdot \sum_{m} \big( a_{m} f_{m} \big) \Big) . \]
With index $p$,
(8-4)
\[ f_p = f \Big( \{ x^{\mu} (\lambda_n + c_p \cdot h) \} ; \lambda_n + c_p \cdot h ; \Psi (\lambda_n) + h \cdot \sum_{m} \big( a_{pm} f_{m} \big) \Big) . \]

T8.1.Taylor expansion of $\Psi$

(8-5)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + \frac{d \Psi (\lambda_{n})}{d \lambda} \cdot h + \frac{1}{2!} \frac{d^2 \Psi (\lambda_{n})}{d \lambda^2} \cdot h^2 + \frac{1}{3!} \frac{d^3 \Psi (\lambda_{n})}{d \lambda^3} \cdot h^3 + \cdots \\ &= \sum_{k=0}^{\infty} \frac{1}{k!} \frac{d^k \Psi (\lambda)}{d \lambda^k} \bigg|_{\lambda = \lambda_n} \cdot h^k ~~ . \end{align*} \]
Since $f_0 = \frac{d \Psi}{d \lambda}$,
(8-6)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + f_0 (\lambda_n) \cdot h + \frac{1}{2!} \frac{d f_0 (\lambda_n)}{d \lambda} \cdot h^2 + \frac{1}{3!} \frac{d^2 f_0 (\lambda_n)}{d \lambda^2} \cdot h^3 + \cdots \\ &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + \sum_{k=0}^{\infty} \frac{1}{(k+1)!} \frac{d^k f_0 (\lambda_n)}{d \lambda^k} \cdot h^{k+1} ~~ . \end{align*} \]
The taylor expansion of the Runge-Kutta method becomes
(8-7)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + h \cdot \sum_p b_p f_p (\lambda_n ; h ; \Psi) \\ &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + h \cdot \sum_p \sum_{k=0}^{\infty} \frac{b_p}{k!} \frac{d^{k} f_p (\lambda ; h ; \Psi)}{d h^{k}} \bigg|_{\lambda=\lambda_n, ~ h=0} \cdot h^{k} , \end{align*} \]
where
(8-8)
\[ \begin{align*} \frac{d f_p \big( \lambda ; h ; \Psi \big)}{d h} \bigg|_{\lambda=\lambda_n , ~ h=0} &= \bigg[ \frac{d x^{\mu}}{d h} \frac{\partial}{\partial x^{\mu}} + \frac{d \lambda}{d h} \frac{\partial}{\partial \lambda} + \frac{d \Psi}{d h} \frac{\partial}{\partial \Psi} \bigg] f_p \bigg|_{\lambda=\lambda_n , ~ h=0} \\ &= \bigg[ c_p \cdot \frac{d x^{\mu}}{d \lambda} \frac{\partial}{\partial x^{\mu}} + c_p \cdot \frac{\partial}{\partial \lambda} + \sum_m \big( a_{pm} f_m + h \cdot a_{pm} \frac{d f_m}{d h} \big) \frac{\partial}{\partial \Psi} \bigg] f_p \bigg|_{\lambda=\lambda_n, ~ h=0} . \end{align*} \]
Since
(8-9)
\[ \begin{align*} \frac{d f_0}{d \lambda} \bigg|_{\lambda=\lambda_n} &= \bigg[ \frac{d x^{\mu}}{d \lambda} \frac{\partial}{\partial x^{\mu}} + \frac{\partial}{\partial \lambda} + \frac{d \Psi}{d \lambda} \frac{\partial}{\partial \Psi} \bigg] f_0 \bigg|_{\lambda=\lambda_n} \\ &= \bigg[ \frac{d x^{\mu}}{d \lambda} \frac{\partial}{\partial x^{\mu}} + \frac{\partial}{\partial \lambda} + f_0 \frac{\partial}{\partial \Psi} \bigg] f_0 \bigg|_{\lambda=\lambda_n} ~~ , \end{align*} \]
Eq.
(8-8)
(8-8)
\[ \begin{align*} \frac{d f_p \big( \lambda ; h ; \Psi \big)}{d h} \bigg|_{\lambda=\lambda_n , ~ h=0} &= \bigg[ \frac{d x^{\mu}}{d h} \frac{\partial}{\partial x^{\mu}} + \frac{d \lambda}{d h} \frac{\partial}{\partial \lambda} + \frac{d \Psi}{d h} \frac{\partial}{\partial \Psi} \bigg] f_p \bigg|_{\lambda=\lambda_n , ~ h=0} \\ &= \bigg[ c_p \cdot \frac{d x^{\mu}}{d \lambda} \frac{\partial}{\partial x^{\mu}} + c_p \cdot \frac{\partial}{\partial \lambda} + \sum_m \big( a_{pm} f_m + h \cdot a_{pm} \frac{d f_m}{d h} \big) \frac{\partial}{\partial \Psi} \bigg] f_p \bigg|_{\lambda=\lambda_n, ~ h=0} . \end{align*} \]
becomes
(8-10)
\[ \begin{align*} \frac{d f_p \big( \lambda ; h ; \Psi \big)}{d h} \bigg|_{\lambda=\lambda_n , ~ h=0} &= c_p \cdot \bigg( \frac{f_0}{d \lambda} - f_0 \frac{\partial f_0}{\partial \Psi} \bigg) + \sum_m \Big( a_{pm} f_m + h \cdot a_{pm} \frac{f_m}{d h} \Big) \frac{\partial f_p}{\partial \Psi} \\ &= c_p \cdot \frac{f_0}{d \lambda} + \bigg[ \sum_m \Big( a_{pm} f_m + h \cdot a_{pm} \frac{d f_m}{d h} \Big) - c_p f_0 \bigg] \frac{\partial f_p}{\partial \Psi} \bigg|_{\lambda=\lambda_n , ~ h=0} \end{align*} \]
▲ Hide

T9.Let's match the coefficients up to $\textrm{O}(h^k)$.

▼ Show/Hide
Matching the coefficients of Eq.
(8-6)
(8-6)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + f_0 (\lambda_n) \cdot h + \frac{1}{2!} \frac{d f_0 (\lambda_n)}{d \lambda} \cdot h^2 + \frac{1}{3!} \frac{d^2 f_0 (\lambda_n)}{d \lambda^2} \cdot h^3 + \cdots \\ &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + \sum_{k=0}^{\infty} \frac{1}{(k+1)!} \frac{d^k f_0 (\lambda_n)}{d \lambda^k} \cdot h^{k+1} ~~ . \end{align*} \]
and Eq.
(8-7)
(8-7)
\[ \begin{align*} \Psi \big( \{ x^{\mu} (\lambda_{n+1} \equiv \lambda_{n} + h) \} \big) &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + h \cdot \sum_p b_p f_p (\lambda_n ; h ; \Psi) \\ &= \Psi \big( \{ x^{\mu} (\lambda_{n}) \} \big) + h \cdot \sum_p \sum_{k=0}^{\infty} \frac{b_p}{k!} \frac{d^{k} f_p (\lambda ; h ; \Psi)}{d h^{k}} \bigg|_{\lambda=\lambda_n, ~ h=0} \cdot h^{k} , \end{align*} \]
where $\frac{d f_p \big( \lambda ; h ; \Psi \big)}{d h} \bigg|_{\lambda=\lambda_n , ~ h=0}$ is calculated by Eq.
(8-10)
(8-10)
\[ \begin{align*} \frac{d f_p \big( \lambda ; h ; \Psi \big)}{d h} \bigg|_{\lambda=\lambda_n , ~ h=0} &= c_p \cdot \bigg( \frac{f_0}{d \lambda} - f_0 \frac{\partial f_0}{\partial \Psi} \bigg) + \sum_m \Big( a_{pm} f_m + h \cdot a_{pm} \frac{f_m}{d h} \Big) \frac{\partial f_p}{\partial \Psi} \\ &= c_p \cdot \frac{f_0}{d \lambda} + \bigg[ \sum_m \Big( a_{pm} f_m + h \cdot a_{pm} \frac{d f_m}{d h} \Big) - c_p f_0 \bigg] \frac{\partial f_p}{\partial \Psi} \bigg|_{\lambda=\lambda_n , ~ h=0} \end{align*} \]
,
(9-1)
\[ \sum_p b_p \frac{1}{k!} \frac{d^k f_p}{d h^k} \bigg|_{\lambda=\lambda_n , ~ h=0} = \frac{1}{(k+1)!} \frac{d^k f_0}{d \lambda^k} \bigg|_{\lambda=\lambda_n} \]
(9-2)
\[ \sum_p b_p \frac{d^k f_p}{d h^k} \bigg|_{\lambda=\lambda_n , ~ h=0} = \frac{1}{k+1} \frac{d^k f_0}{d \lambda^k} \bigg|_{\lambda=\lambda_n} \]

T9.1.Order of $h$. $k=0$.

(9-3)
\[ \sum_p b_p f_p \bigg|_{\lambda = \lambda_n, ~ h = 0} = f_0 \bigg|_{\lambda = \lambda_n} . \]
Since
(9-4)
\[ f_p \bigg|_{\lambda = \lambda_n, ~ h = 0} = f_0 \bigg|_{\lambda = \lambda_n} \]
, therefore
(9-5)
\[ \therefore \sum_p b_p = 1 . \]

T9.2.Order of $h^2$. $k=1$.

(9-6)
\[ \sum_p b_p \frac{d f_p}{d h} \bigg|_{\lambda=\lambda_n , ~ h=0} = \frac{1}{2} \frac{d f_0}{d \lambda}\bigg|_{\lambda=\lambda_n} . \]
Since
(9-7)
\[ \frac{d f_p}{d h} = c_p \frac{\partial f_p}{\partial \lambda} + \sum_m \Big( a_{pm} f_m + h \cdot a_{pm} \frac{d f_m}{d h} \Big) \frac{\partial f_p}{\partial \Psi} , \]
(9-8)
\[ \sum_p b_p \bigg( c_p \frac{\partial f_0}{\partial \lambda}\bigg|_{\lambda=\lambda_n} + \sum_m \Big( a_{pm} f_0 \Big) \frac{\partial f_0}{\partial \Psi} \bigg|_{\lambda=\lambda_n} = \frac{1}{2} \bigg( \frac{\partial f_0}{\partial \lambda}\bigg|_{\lambda=\lambda_n} + \frac{d \Psi}{d \lambda} \frac{\partial f_0}{\partial \Psi}\bigg|_{\lambda=\lambda_n} \bigg) \]
(9-9)
\[ \sum_p b_p \bigg( c_p \frac{\partial f_0}{\partial \lambda}\bigg|_{\lambda=\lambda_n} + \sum_m \Big( a_{pm} f_0 \Big) \frac{\partial f_0}{\partial \Psi} \bigg|_{\lambda=\lambda_n} = \frac{1}{2} \bigg( \frac{\partial f_0}{\partial \lambda}\bigg|_{\lambda=\lambda_n} + f_0 \frac{\partial f_0}{\partial \Psi}\bigg|_{\lambda=\lambda_n} \bigg) \]
Therefore
(9-10)
\[ \therefore \sum_p b_p c_p = \frac{1}{2} \]
and
(9-11)
\[ \therefore \sum_{p, m} b_p a_{pm} = \frac{1}{2} \]
This could mean that
(9-12)
\[ \therefore \sum_m a_{pm} = c_p . \]

T9.3.Order of $h^3$. $k=2$.

(9-13)
\[ \sum_{p} b_p \frac{d^2 f_p}{d h^2} \bigg|_{\lambda=\lambda_n , ~ h=0} = \frac{1}{3} \frac{d^2 f_0}{d \lambda^2} \bigg|_{\lambda=\lambda_n} \]
From Eq.
(9-7)
(9-7)
\[ \frac{d f_p}{d h} = c_p \frac{\partial f_p}{\partial \lambda} + \sum_m \Big( a_{pm} f_m + h \cdot a_{pm} \frac{d f_m}{d h} \Big) \frac{\partial f_p}{\partial \Psi} , \]
,
(9-14)
\[ \begin{align*} \frac{d^2 f_p}{d h^2} &= \frac{d}{d h} \bigg[ c_p \frac{\partial f_p}{\partial \lambda} + \sum_m \Big( a_{pm} f_m + h \cdot a_{pm} \frac{d f_m}{d h} \Big) \frac{\partial f_p}{\partial \Psi} \bigg] \\ &= c_p \frac{d}{d h} \bigg( \frac{\partial f_p}{\partial \lambda} \bigg) + \sum_m \Big( 2 a_{pm} \frac{d f_m}{d h} + h \cdot a_{pm} \frac{d^2 f_m}{d h^2} \Big) \frac{\partial f_p}{\partial \Psi} + \sum_m \Big( a_{pm} f_m + h \cdot a_{pm} \frac{d f_m}{d h} \Big) \frac{d}{d h} \bigg( \frac{\partial f_p}{\partial \Psi} \bigg) . \end{align*} \]
And condition $\lambda=\lambda_n$, $h=0$ applies,
(9-15)
\[ \begin{align*} \sum_p b_p \Bigg[ c_p \frac{d}{d h} \bigg( \frac{\partial f_p}{\partial \lambda} \bigg) + \sum_m 2 a_{pm} \frac{d f_m}{d h} \frac{\partial f_p}{\partial \Psi} + \sum_m a_{pm} f_m \frac{d}{d h} \bigg( \frac{\partial f_p}{\partial \Psi} \bigg) \Bigg] &= \frac{1}{3} \frac{d}{d \lambda} \Bigg[ \frac{\partial f_0}{\partial \lambda} + f_0 \frac{\partial f_0}{\partial \Psi} \Bigg] \\ &= \frac{1}{3} \Bigg[ \frac{d}{d \lambda} \bigg( \frac{\partial f_0}{\partial \lambda} \bigg) + \frac{d f_0}{d \lambda} \frac{\partial f_0}{\partial \Psi} + f_0 \frac{d}{d \lambda} \bigg( \frac{\partial f_0}{\partial \Psi} \bigg) \Bigg] \end{align*} \]
From the result Eq.
(9-12)
(9-12)
\[ \therefore \sum_m a_{pm} = c_p . \]
, Eq.
(9-7)
(9-7)
\[ \frac{d f_p}{d h} = c_p \frac{\partial f_p}{\partial \lambda} + \sum_m \Big( a_{pm} f_m + h \cdot a_{pm} \frac{d f_m}{d h} \Big) \frac{\partial f_p}{\partial \Psi} , \]
becomes
(9-16)
\[ \begin{align*} \frac{d f_p}{d h} \bigg|_{\lambda=\lambda_n, ~ h=0} &= c_p \frac{\partial f_0}{\partial \lambda} + \sum_m a_{pm} f_0 \frac{\partial f_0}{\partial \Psi} \bigg|_{\lambda=\lambda_n} \\ &= c_p \bigg( \frac{\partial f_0}{\partial \lambda} + f_0 \frac{\partial f_0}{\partial \Psi} \bigg) \bigg|_{\lambda=\lambda_n} \\ &= c_p \frac{d f_0}{d \lambda} \bigg|_{\lambda=\lambda_n} ~ . \end{align*} \]
Then
(9-17)
\[ \begin{align*} \sum_p b_p \Bigg[ c_p^2 \frac{d}{d \lambda} \bigg( \frac{\partial f_0}{\partial \lambda} \bigg) + \sum_m 2 a_{pm} c_m \frac{d f_0}{d \lambda} \frac{\partial f_0}{\partial \Psi} + \sum_m a_{pm} f_0 c_p \frac{d}{d \lambda} \bigg( \frac{\partial f_0}{\partial \Psi} \bigg) \Bigg] &= \frac{1}{3} \Bigg[ \frac{d}{d \lambda} \bigg( \frac{\partial f_0}{\partial \lambda} \bigg) + \frac{d f_0}{d \lambda} \frac{\partial f_0}{\partial \Psi} + f_0 \frac{d}{d \lambda} \bigg( \frac{\partial f_0}{\partial \Psi} \bigg) \Bigg] \end{align*} \]
Therefore
(9-18)
\[ \sum_p b_p c_p^2 = \frac{1}{3} \]
(9-19)
\[ 2 \sum_{p, m} b_p a_{pm} c_m = \frac{1}{3} \]
(9-20)
\[ \begin{align*} &\sum_{p, m} b_p a_{pm} f_0 c_p = \frac{1}{3} f_0 \\ &\sum_p b_p c_p^2 = \frac{1}{3} \end{align*} \]

T9.4.Order of $h^4$. $k=3$.

(9-21)
\[ \sum_p b_p \frac{d^3 f_p}{d h^3} \bigg|_{\lambda=\lambda_n , ~ h=0} = \frac{1}{4} \frac{d^3 f_0}{d \lambda^3} \bigg|_{\lambda=\lambda_n} \]
Then the results are
(9-22)
\[ \sum_p b_p c_p^3 = \frac{1}{4} \]
(9-23)
\[ 3 \sum_{p, q} b_p a_{pq} c_q^2 = \frac{1}{4} \]
(9-24)
\[ 6 \sum_{p, q} b_p c_p a_{pq} c_q = \frac{3}{4} \]
(9-25)
\[ 3 \sum_{p, q} b_p c_p^2 a_{pq} = \frac{1}{4} \]
(9-26)
\[ 6 \sum_{p, q, m} b_p a_{pq} a_{qm} c_m = \frac{1}{4} \]

T9.5.Order of $h^5$. $k=4$.

(9-27)
\[ \sum_p b_p \frac{d^4 f_p}{d h^4} \bigg|_{\lambda=\lambda_n , ~ h=0} = \frac{1}{5} \frac{d^4 f_0}{d \lambda^4} \bigg|_{\lambda=\lambda_n} \]
The results are
(9-28)
\[ \sum_p b_p c_p^4 = \frac{1}{5} \]
(9-29)
\[ 4 \sum_{p, m} b_p a_{pm} c_m^3 = \frac{1}{5} \]
(9-30)
\[ 6 \sum_{p, m} b_p c_p a_{pm} c_m^2 = \frac{3}{5} \]
(9-31)
\[ 2 \sum_{p, m} b_p c_p^2 a_{pm} c_m = \frac{3}{5} \]
▲ Hide

T10.Written in papers by color ballpoint pen

▼ Show/Hide
▲ Hide

T11.Written in papers 2.

▼ Show/Hide
▲ Hide

T12.Candidate set $\{ b_p \}$, $\{ c_p \}$, $\{ a_{pm} \}$

▼ Show/Hide
As it is not easy to solve the above simultaneous equations for $\{ b_p \}$, $\{ c_p \}$, $\{ a_{pm} \}$, let's just check the well-known coefficients set $\{ b_p \}$, $\{ c_p \}$, $\{ a_{pm} \}$ to satisfy the above simultaneous equations Eq.
(9-5)
(9-5)
\[ \therefore \sum_p b_p = 1 . \]
,
(9-10)
(9-10)
\[ \therefore \sum_p b_p c_p = \frac{1}{2} \]
,
(9-12)
(9-12)
\[ \therefore \sum_m a_{pm} = c_p . \]
,
(9-18)
(9-18)
\[ \sum_p b_p c_p^2 = \frac{1}{3} \]
,
(9-19)
(9-19)
\[ 2 \sum_{p, m} b_p a_{pm} c_m = \frac{1}{3} \]
,
(9-22)
(9-22)
\[ \sum_p b_p c_p^3 = \frac{1}{4} \]
,
(9-23)
(9-23)
\[ 3 \sum_{p, q} b_p a_{pq} c_q^2 = \frac{1}{4} \]
,
(9-24)
(9-24)
\[ 6 \sum_{p, q} b_p c_p a_{pq} c_q = \frac{3}{4} \]
,
(9-25)
(9-25)
\[ 3 \sum_{p, q} b_p c_p^2 a_{pq} = \frac{1}{4} \]
,
(9-26)
(9-26)
\[ 6 \sum_{p, q, m} b_p a_{pq} a_{qm} c_m = \frac{1}{4} \]
,
(9-28)
(9-28)
\[ \sum_p b_p c_p^4 = \frac{1}{5} \]
,
(9-29)
(9-29)
\[ 4 \sum_{p, m} b_p a_{pm} c_m^3 = \frac{1}{5} \]
,
(9-30)
(9-30)
\[ 6 \sum_{p, m} b_p c_p a_{pm} c_m^2 = \frac{3}{5} \]
,
(9-31)
(9-31)
\[ 2 \sum_{p, m} b_p c_p^2 a_{pm} c_m = \frac{3}{5} \]
$\cdots$

T12.1.Let's consider $b_0 = \frac{1}{6}$, $b_1 = \frac{1}{3}$, $b_2 = \frac{1}{3}$, $b_3 = \frac{1}{6}$ and $c_0 = 0$, $c_1 = \frac{1}{2}$, $c_2 = \frac{1}{2}$, $c_3 = 1$.

(12-1)
\[ \begin{matrix} 0 \\ 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1 & 0 & 0 & 1 \\ & 1/6 & 1/3 & 1/3 & 1/6 \end{matrix} \]
$\sum_p b_p c_p^0$=0.9999999999999999 ($\sum_p b_p c_p^0-\frac{1}{1}$=-1.1102230246251565e-16)
$\sum_p b_p c_p^1$=0.5 ($\sum_p b_p c_p^1-\frac{1}{2}$=0)
$\sum_p b_p c_p^2$=0.3333333333333333 ($\sum_p b_p c_p^2-\frac{1}{3}$=0)
$\sum_p b_p c_p^3$=0.25 ($\sum_p b_p c_p^3-\frac{1}{4}$=0)
$\sum_p b_p c_p^4$=0.20833333333333331 ($\sum_p b_p c_p^4-\frac{1}{5}$=0.008333333333333304)
$\sum_p b_p c_p^5$=0.1875 ($\sum_p b_p c_p^5-\frac{1}{6}$=0.020833333333333343)
$\sum_p b_p c_p^6$=0.17708333333333331 ($\sum_p b_p c_p^6-\frac{1}{7}$=0.034226190476190466)

$\sum_m a_{0m}$=0 ($\sum_m a_{0m} - c_{0}$=0)
$\sum_m a_{1m}$=0.5 ($\sum_m a_{1m} - c_{1}$=0)
$\sum_m a_{2m}$=0.5 ($\sum_m a_{2m} - c_{2}$=0)
$\sum_m a_{3m}$=1 ($\sum_m a_{3m} - c_{3}$=0)

$2 \sum_{p, m} b_p a_{pm} c_m$=0.3333333333333333 ($2 \sum_{p, m} b_p a_{pm} c_m - \frac{1}{3}$=0)

$3 \sum_{p, q} b_p a_{pq} c_q^2$=0.25 ($3 \sum_{p, q} b_p a_{pq} c_q^2 - \frac{1}{4}$=0)
$6 \sum_{p, q} b_p c_p a_{pq} c_q$=0.75 ($6 \sum_{p, q} b_p c_p a_{pq} c_q - \frac{3}{4}$=0)
$3 \sum_{p, q} b_p c_p^2 a_{pq}$=0.75 ($3 \sum_{p, q} b_p c_p^2 a_{pq} - \frac{1}{4}$=0.5)
$6 \sum_{p, m, q} b_p a_{pm} a_{mq} c_q$=0.25 ($6 \sum_{p, m, q} b_p a_{pm} a_{mq} c_q - \frac{1}{4}$=0)

T12.2.Let's consider $b_0 = \frac{1}{8}$, $b_1 = \frac{3}{8}$, $b_2 = \frac{3}{8}$, $b_3 = \frac{1}{8}$ and $c_0 = 0$, $c_1 = \frac{1}{3}$, $c_2 = \frac{2}{3}$, $c_3 = 1$.

(12-2)
\[ \begin{matrix} 0 \\ 1/3 & 1/3 \\ 2/3 & -1/3 & 1 \\ 1 & 1 & -1 & 1 \\ & 1/8 & 3/8 & 3/8 & 1/8 \end{matrix} \]
$\sum_p b_p c_p^0$=1 ($\sum_p b_p c_p^0-\frac{1}{1}$=0)
$\sum_p b_p c_p^1$=0.5 ($\sum_p b_p c_p^1-\frac{1}{2}$=0)
$\sum_p b_p c_p^2$=0.3333333333333333 ($\sum_p b_p c_p^2-\frac{1}{3}$=0)
$\sum_p b_p c_p^3$=0.25 ($\sum_p b_p c_p^3-\frac{1}{4}$=0)
$\sum_p b_p c_p^4$=0.2037037037037037 ($\sum_p b_p c_p^4-\frac{1}{5}$=0.0037037037037036813)
$\sum_p b_p c_p^5$=0.17592592592592593 ($\sum_p b_p c_p^5-\frac{1}{6}$=0.009259259259259273)
$\sum_p b_p c_p^6$=0.15843621399176955 ($\sum_p b_p c_p^6-\frac{1}{7}$=0.015579071134626699)

$\sum_m a_{0m}$=0 ($\sum_m a_{0m} - c_{0}$=0)
$\sum_m a_{1m}$=0.3333333333333333 ($\sum_m a_{1m} - c_{1}$=0)
$\sum_m a_{2m}$=0.6666666666666667 ($\sum_m a_{2m} - c_{2}$=1.1102230246251565e-16)
$\sum_m a_{3m}$=1 ($\sum_m a_{3m} - c_{3}$=0)

$2 \sum_{p, m} b_p a_{pm} c_m$=0.33333333333333337 ($2 \sum_{p, m} b_p a_{pm} c_m - \frac{1}{3}$=5.551115123125783e-17)

$3 \sum_{p, q} b_p a_{pq} c_q^2$=0.25 ($3 \sum_{p, q} b_p a_{pq} c_q^2 - \frac{1}{4}$=0)
$6 \sum_{p, q} b_p c_p a_{pq} c_q$=0.75 ($6 \sum_{p, q} b_p c_p a_{pq} c_q - \frac{3}{4}$=0)
$3 \sum_{p, q} b_p c_p^2 a_{pq}$=0.75 ($3 \sum_{p, q} b_p c_p^2 a_{pq} - \frac{1}{4}$=0.5)
$6 \sum_{p, m, q} b_p a_{pm} a_{mq} c_q$=0.25 ($6 \sum_{p, m, q} b_p a_{pm} a_{mq} c_q - \frac{1}{4}$=0)

T12.3.Let's consider $b_0 = \frac{16}{135}$, $b_1 = 0$, $b_2 = \frac{6656}{12825}$, $b_3 = \frac{28561}{56430}$, $b_4 = -\frac{9}{50}$, $b_5 = \frac{2}{55}$ and $c_0 = 0$, $c_1 = \frac{1}{4}$, $c_2 = \frac{3}{8}$, $c_3 = \frac{12}{13}$, $c_4 = 1$, $c_5 = \frac{1}{2}$.

(12-3)
\[ \begin{matrix} 0 \\ 1/4 & 1/4 \\ 3/8 & 3/32 & 9/32 \\ 12/13 & 1932/2197 & -7200/2197 & 7296/2197 \\ 1 & 439/216 & -8 & 3680/513 & -845/4104 \\ 1/2 & -8/27 & 2 & -3544/2565 & 1859/4104 & -11/40 \\ & 16/135 & 0 & 6656/12825 & 28561/56430 & -9/50 & 2/55 \end{matrix} \]
$\sum_p b_p c_p^0$=1 ($\sum_p b_p c_p^0-\frac{1}{1}$=0)
$\sum_p b_p c_p^1$=0.5 ($\sum_p b_p c_p^1-\frac{1}{2}$=0)
$\sum_p b_p c_p^2$=0.33333333333333337 ($\sum_p b_p c_p^2-\frac{1}{3}$=5.551115123125783e-17)
$\sum_p b_p c_p^3$=0.25000000000000006 ($\sum_p b_p c_p^3-\frac{1}{4}$=5.551115123125783e-17)
$\sum_p b_p c_p^4$=0.20000000000000007 ($\sum_p b_p c_p^4-\frac{1}{5}$=5.551115123125783e-17)
$\sum_p b_p c_p^5$=0.16418269230769236 ($\sum_p b_p c_p^5-\frac{1}{6}$=-0.0024839743589742946)
$\sum_p b_p c_p^6$=0.13511695636094687 ($\sum_p b_p c_p^6-\frac{1}{7}$=-0.007740186496195983)

$\sum_m a_{0m}$=0 ($\sum_m a_{0m} - c_{0}$=0)
$\sum_m a_{1m}$=0.25 ($\sum_m a_{1m} - c_{1}$=0)
$\sum_m a_{2m}$=0.375 ($\sum_m a_{2m} - c_{2}$=0)
$\sum_m a_{3m}$=0.9230769230769229 ($\sum_m a_{3m} - c_{3}$=-2.220446049250313e-16)
$\sum_m a_{4m}$=0.9999999999999997 ($\sum_m a_{4m} - c_{4}$=-3.3306690738754696e-16)
$\sum_m a_{5m}$=0.4999999999999999 ($\sum_m a_{5m} - c_{5}$=-1.1102230246251565e-16)

$2 \sum_{p, m} b_p a_{pm} c_m$=0.3333333333333333 ($2 \sum_{p, m} b_p a_{pm} c_m - \frac{1}{3}$=0)

$3 \sum_{p, q} b_p a_{pq} c_q^2$=0.25 ($3 \sum_{p, q} b_p a_{pq} c_q^2 - \frac{1}{4}$=0)
$6 \sum_{p, q} b_p c_p a_{pq} c_q$=0.7499999999999997 ($6 \sum_{p, q} b_p c_p a_{pq} c_q - \frac{3}{4}$=-3.3306690738754696e-16)
$3 \sum_{p, q} b_p c_p^2 a_{pq}$=0.7500000000000002 ($3 \sum_{p, q} b_p c_p^2 a_{pq} - \frac{1}{4}$=0.5000000000000002)
$6 \sum_{p, m, q} b_p a_{pm} a_{mq} c_q$=0.25 ($6 \sum_{p, m, q} b_p a_{pm} a_{mq} c_q - \frac{1}{4}$=0)

T12.4.Let's consider $b_0 = \frac{25}{216}$, $b_1 = 0$, $b_2 = \frac{1408}{2565}$, $b_3 = \frac{2197}{4104}$, $b_4 = -\frac{1}{5}$, $b_5 = 0$ and $c_0 = 0$, $c_1 = \frac{1}{4}$, $c_2 = \frac{3}{8}$, $c_3 = \frac{12}{13}$, $c_4 = 1$, $c_5 = \frac{1}{2}$.

(12-4)
\[ \begin{matrix} 0 \\ 1/4 & 1/4 \\ 3/8 & 3/32 & 9/32 \\ 12/13 & 1932/2197 & -7200/2197 & 7296/2197 \\ 1 & 439/216 & -8 & 3680/513 & -845/4104 \\ 1/2 & -8/27 & 2 & -3544/2565 & 1859/4104 & -11/40 \\ & 25/216 & 0 & 1408/2565 & 2197/4104 & -1/5 & 0 \end{matrix} \]
$\sum_p b_p c_p^0$=1 ($\sum_p b_p c_p^0-\frac{1}{1}$=0)
$\sum_p b_p c_p^1$=0.5 ($\sum_p b_p c_p^1-\frac{1}{2}$=0)
$\sum_p b_p c_p^2$=0.3333333333333334 ($\sum_p b_p c_p^2-\frac{1}{3}$=1.1102230246251565e-16)
$\sum_p b_p c_p^3$=0.25000000000000006 ($\sum_p b_p c_p^3-\frac{1}{4}$=5.551115123125783e-17)
$\sum_p b_p c_p^4$=0.1995192307692309 ($\sum_p b_p c_p^4-\frac{1}{5}$=-0.00048076923076911804)
$\sum_p b_p c_p^5$=0.1628374630177516 ($\sum_p b_p c_p^5-\frac{1}{6}$=-0.003829203648915064)
$\sum_p b_p c_p^6$=0.13269581922792456 ($\sum_p b_p c_p^6-\frac{1}{7}$=-0.010161323629218288)

$\sum_m a_{0m}$=0 ($\sum_m a_{0m} - c_{0}$=0)
$\sum_m a_{1m}$=0.25 ($\sum_m a_{1m} - c_{1}$=0)
$\sum_m a_{2m}$=0.375 ($\sum_m a_{2m} - c_{2}$=0)
$\sum_m a_{3m}$=0.9230769230769229 ($\sum_m a_{3m} - c_{3}$=-2.220446049250313e-16)
$\sum_m a_{4m}$=0.9999999999999997 ($\sum_m a_{4m} - c_{4}$=-3.3306690738754696e-16)
$\sum_m a_{5m}$=0.4999999999999999 ($\sum_m a_{5m} - c_{5}$=-1.1102230246251565e-16)

$2 \sum_{p, m} b_p a_{pm} c_m$=0.33333333333333354 ($2 \sum_{p, m} b_p a_{pm} c_m - \frac{1}{3}$=2.220446049250313e-16)

$3 \sum_{p, q} b_p a_{pq} c_q^2$=0.25 ($3 \sum_{p, q} b_p a_{pq} c_q^2 - \frac{1}{4}$=0)
$6 \sum_{p, q} b_p c_p a_{pq} c_q$=0.7500000000000002 ($6 \sum_{p, q} b_p c_p a_{pq} c_q - \frac{3}{4}$=2.220446049250313e-16)
$3 \sum_{p, q} b_p c_p^2 a_{pq}$=0.7500000000000004 ($3 \sum_{p, q} b_p c_p^2 a_{pq} - \frac{1}{4}$=0.5000000000000004)
$6 \sum_{p, m, q} b_p a_{pm} a_{mq} c_q$=0.25 ($6 \sum_{p, m, q} b_p a_{pm} a_{mq} c_q - \frac{1}{4}$=0)

▲ Hide

T13.Adaptive step size

▼ Show/Hide
During the integration, the step size is adapted such that the estimated error stays below a user-defined threshold: If the error is too high, a step is repeated with a lower step size; if the error is much smaller, the step size is increased to save time. This results in an (almost) optimal step size, which saves computation time. Moreover, the user does not have to spend time on finding an appropriate step size .
▲ Hide
반응형
Get page views